Round Table Activity

5.2L Solving Quadratic Equations Using the Quadratic Formula to Find Real Solutions page 33

Section 5.2L

Is it factorable?

To determine if a quadratic equation is factorable, find the value of the discriminant.

- If the discriminant is a <u>perfect square number OR zero</u>, then the quadratic equation <u>is</u> factorable
- If the discriminant is <u>not a perfect square number OR negative</u>, then the quadratic equation <u>is not</u> factorable.

The Quadratic Formula

Let a, b, and c be real numbers such that $a \neq 0$. The solutions of the quadratic equation $ax^2 + bx + c = 0$ are:

Is it factorable?

To determine if a quadratic equation is factorable, find the value of the discriminant.

- value of the discriminant.

 If the discriminant is a perfect square number OR zero, then the quadratic equation is factorable
- If the discriminant is <u>not a perfect square number OR</u> <u>negative</u>, then the quadratic equation <u>is not</u> factorable.

DISCRIMINANT:

The discriminant determines the number and type of solutions of any quadratic (remember to set the equation = 0 first).

What is a solution/root/zero?_

Discriminant # of roots types of roots

-Positive

(if the discriminant is a perfect square the roots are rational and the equation can be factored...and if not a perfect square the roots are irrational)

-Zero 1 real

-Negative 0 real

(no real roots means there must be 2 complex or imaginary)

Use the quadratic formula to solve the following equation.

page 33

1) Solve $9x^2 + 6x = 1$

Step 1: Write the equation in standard form.

Step 2: Identify the values of a, b and c. a = b = c = c

Step 3: Substitute the values from Step 2 into the quadratic formula and

$$X = -1 + \sqrt{3}$$
 $X = -1 - \sqrt{3}$

#2 – 5: Use the quadratic formula to find the solutions to the following equations.

page 34